Parameter Estimation Through Weighted Least-Squares Rank Regression with Specific Reference to the Weibull and Gumbel Distributions

نویسندگان

  • J. Martin van Zyl
  • Robert Schall
چکیده

Least squares regression based on probability plots, also called rank regression, can be used to estimate the parameters of some distributions. Regression is performed between a function of the empirical distribution function and the order statistic as the independent variable. Using large sample properties of the empirical distribution function and order statistics, weights to stabilize the variance in order to perform weighted least squares regression are derived. Weighted least squares regression is then applied to the estimation of the parameters of the Weibull, the exponential and the Gumbel (extreme value type I) distributions. The weights are independent of the parameters of the distributions considered. Monte Carlo simulation shows that the weighted least-squares estimators outperform the usual least-squares estimators with respect to the mean square error, especially in small samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Variances in Weighted Least-Squares Estimation of Distributional Parameters

Abstract: Many estimation methods have been proposed for the parameters of statistical distribution. The least squares estimation method, based on a regression model or probability plot, is frequently used by practitioners since its implementation procedure is extremely simple in complete and censoring data cases. However, in the procedure, heteroscedasticity is present in the used regression m...

متن کامل

Generalized Least Squares and Weigh- Ted Least Squares Estimation Methods for Distributional Parameters

• Regression procedures are often used for estimating distributional parameters because of their computational simplicity and useful graphical presentation. However, the resulting regression model may have heteroscedasticity and/or correction problems and thus, weighted least squares estimation or alternative estimation methods should be used. In this study, we consider generalized least square...

متن کامل

Evaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling

One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...

متن کامل

Comparison of the Performance of Geographically Weighted Regression and Ordinary Least Squares for modeling of Sea surface temperature in Oman Sea

In Marine discussions, the study of sea surface temperature (SST) and study of its spatial relationships with other ocean parameters are of particular importance, in such a way that the accurate recognition of the SST relationships with other parameters allows the study of many ocean and atmospheric processes. Therefore, in this study, spatial relations modeling of SST with Surface Wind Speed (...

متن کامل

Estimating time trends in Gumbel-distributed data by means of generalized linear models

[1] This paper shows how Gumbel-distributed data can be related to explanatory variables by using generalized linear models (GLMs) fitted by using a modified form of the iteratively weighted least squares algorithm (IWLS). Typical applications include (1) testing for trend in annual flood data, as a possible consequence of changing land cover or other factors; (2) testing for trend in annual ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Communications in Statistics - Simulation and Computation

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2012